25 research outputs found

    Video-Based Feedback for Assisting Physical Activity

    Get PDF
    In this paper, we explore the concept of providing feedback to a user moving in front of a depth camera so that he is able to replicate a specific template action. This can be used as a home based rehabilitation system for stroke survivors, where the objective is for patients to practice and improve their daily life activities. Patients are guided in how to correctly perform an action by following feedback proposals. These proposals are presented in a human interpretable way. In order to align an action that was performed with the template action, we explore two different approaches, namely, Subsequence Dynamic Time Warping and Temporal Commonality Discovery. The first method aims to find the temporal alignment and the second one discovers the interval of the subsequence that shares similar content, after which standard Dynamic Time Warping can be used for the temporal alignment. Then, feedback proposals can be provided in order to correct the user with respect to the template action. Experimental results show that both methods have similar accuracy rate and the computational time is a decisive factor, where Subsequence Dynamic Time Warping achieves faster results

    Visual and human-interpretable feedback for assisting physical activity

    Get PDF
    Physical activity is essential for stroke survivors for recovering some autonomy in daily life activities. Post-stroke patients are initially subject to physical therapy under the supervision of a health professional, but due to economical aspects, home based rehabilitation is eventually suggested. In order to support the physical activity of stroke patients at home, this paper presents a system for guiding the user in how to properly perform certain actions and movements. This is achieved by presenting feedback in form of visual information and human-interpretable messages. The core of the proposed approach is the analysis of the motion required for aligning body-parts with respect to a template skeleton pose, and how this information can be presented to the user in form of simple recommendations. Experimental results in three datasets show the potential of the proposed framework

    A Global Approach for the Detection of Vanishing Points and Mutually Orthogonal Vanishing Directions

    No full text
    This article presents a new global approach for detecting vanishing points and groups of mutually orthogonal vanish-ing directions using lines detected in images of man-made environments. These two multi-model fitting problems are respectively cast as Uncapacited Facility Location (UFL) and Hierarchical Facility Location (HFL) instances that are efficiently solved using a message passing inference algo-rithm. We also propose new functions for measuring the consistency between an edge and a putative vanishing point, and for computing the vanishing point defined by a subset of edges. Extensive experiments in both synthetic and real images show that our algorithms outperform the state-of-the-art methods while keeping computation tractable. In addition, we show for the first time results in simultaneously detecting multiple Manhattan-world configurations that can either share one vanishing direction (Atlanta world) or be completely independent. 1
    corecore